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AI)~a'aet--The rapid transfer of a mixture consisting of an Abel-Noble (AN) gas and constant density 
solid particles (or liquid droplets) without phase change is analytically investigated. The two-phase mixture 
is assumed to remain homogeneous and at equilibrium in a high-pressure supply vessel as well as during 
the expansion to a finite volume receiver. The physical conditions required for carrier gases to be 
accurately described by an AN equation of state are given. It is shown that the expanding mixture, or 
pseudo-fluid, behaves as a modified AN gas which is pseudo-polytropic. Special emphasis is placed on 
obtaining approximate analytical solutions which are mathematically valid for all parameter ranges 
of interest. The general sonic flow solution and the subsonic discharge limit represent two of the three 
cases which admit such approximate solutions. The third case involves subsonic solutions for the 
single-fluid problem, where initial particle mass fractions in the supply and receiver are the same. All of 
these special cases are unique in that, when properly non-dimensionalized, they only depend on the 
mixture ratio of specific heats and the initial mixture volume fraction combining the individual effects of 
the particles and gas molecules. Numerical results are also given for subsonic finite volume ratio cases, 
as well as other subsonic cases which show the effects of parameters describing separate particle and gas 
contributions not present in the three special approximate solutions. The general results show that often 
the more simple single-fluid solutions can be used to adequately estimate the behavior of more complex 
cases. 

Key Words: homogeneous, equilibrium, two-phase, ideal gas, finite volume, compressible, transfer 

1. I N T R O D U C T I O N  

The carrier gas is described in this work by an Abel-Noble (AN) equation of state (EOS). 
The compressiblity factor Zc=Pc/pcRGTc for an AN gas is written in terms of the gas 
density PG and an empirical gas co-density do such that Zo = (1 - 2o) -l, where 2o = po/do can be 
regarded as the volume fraction of molecules in the gas phase. This means that for constant 
temperature To, the AN gas compressibility is linear with pressure ZG= 1 +PG/d~RGTG, 
1~ = 82.06 atm cm3/K mol. The AN-EOS accounts for the finite volume occupied by the gas 
molecules, but it neglects the effects of intermolecular attraction or cohesion forces. 

Part I (Chenoweth & Paolucci 1990a) involved results for an ideal carrier gas where Z~ = 1, 
corresponding to cases where 2o ~ 1. The results given here are extensions of the non-ideal pure 
gas results of Chenoweth (1983). It was shown there that if the gas temperature is much greater 
than the critical gas temperature To >> To, then most aspects of gas transfer problems are properly 
described using the AN-EOS. The restriction To >> T0 allows most common gas species, such as N2, 
02, CO, CO 2 and Ar, to be used as carrier gases at high temperatures. However, for expansions 
initiated near room t6mperature the results are valid only for He, Ne, H2 and their isotopes. The 
basic reason why the AN-EOS does so well is because the gas sound speed and the PVT behavior 
are modeled quite well, even though the specific heats at constant pressure and volume (and 
therefore their ratio also) are equal to the ideal gas values (Chenoweth 1983). Regarding the use 
of the AN-EOS, it is important to note that experimental values of do are significantly more 
accurate for predicting PVT behavior than those obtained directly via critical property information 
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using do = 8Pc/RG Tc or corresponding states (involving averages over many gases) do .~ IOPc/R~ Tc 
(Chenoweth 1983; Hirschfelder et al. 1967; van Wylen & Sonntag 1973). 

Errors > 4% result for Po > 100 atm if an ideal gas EOS is used for He, Ne and H2. These three 
gases have empirical co-densities of 0.0935, 0.0775 and 0.0645 mol/cm 3, respectively. In the range 
200 ~< To ~< 350 K and 0 ~< Po ~< 1000 atm, Cpo and Cvo can exceed their ideal gas limits resulting 
from the AN approximation by as much as 12% (Chenoweth 1983). On the other hand, their ratio 
YG may exceed its ideal gas value 7G~ by up to 3 and 4.5%, respectively, for Ne and H2, and decrease 
as much as 9% for He. However, Chenoweth (1983) has shown that a greatly improved EOS 
without such large specific heat errors improves pure gas transfer results by only a small fraction 
of these errors. It is apparent, therefore, that the accurate AN sound speed and PVT descriptions 
are the dominant effects, whereas the specific heats are either second order or else they involve 
compensating effects which cancel much of their influence on the results. 

It was shown in Part I that for P = PG (no particle contribution to pressure other than gas 
volume displacement) and T = TG = To (no thermal lag between phases), the mixture compressibil- 
ity factor is 

P Zo 
z -  = ( l  - ,~ ) - '  = - -  [1] 

p R T  1 - 0  

when a mixture "gas" constant R = (1 - ~b)RG is defined. The combined particle and gas molecule 
volume fraction contributions, which include non-ideal carrier gas effects, are given by 

where 

P ). =-~ = 0  +(1 -- 0)2G, 
a 

[2] 

I-l-b+,_] 
d = k do ddJ [31 

is the mixture co-density, and the particle co-density is just its density, dd = Pd. It will be shown 
that 2 is the key parameter in this study. We note that when 20~0,  2-~0, and that the particle 
volume fraction 0 is the key parameter in Part I. In some special cases, it is found that 2 describes 
the problem for arbitrary 0 and )-o so long as they are related by [2]. Equations [t]-[3] illustrate 
that AN gas/particle mixtures also behave like the ideal gas/particle mixtures treated in Part I. 
However, the present results, with some exceptions, are considerably more complex than those 
given in Part I. 

As in Part I, the mixture is assumed to remain homogeneous and at equilibrium in each stagnant 
vessel as well as during the expansion process of the flow between vessels, and no attempt is made 
to define the physical limitations of these restrictions, since these tasks are deafly beyond the scope 
of  the current analysis. 

2. G O V E R N I N G  EQUATIONS 

Only expressions which are significantly modified from Part I (Chenoweth & Paolucci 1990a) are 
given here. Equations which are the same as in Part I, or can be obtained by means of  a symbol 
change or simple substitution are not repeated, but the differences in the results are described. 
Furthermore, the nomenclature is the same as in Part I. 

2. I. lsentropic relations and mixture sound speed 

The isentropic relations given in Part I describing a reversible adiabatic expansion, where the 
particle mass fraction ~, and therefore also the mixture specific heats, are constant for a calorically 
perfect gas, must be modified when ZG ~ 1. Here 

T(pZ)  ~-~ = C1, P(pZ)  -~ = C2, PT -~1(~-~) = C3, [4] 

and C~, C2 and C3 are constants since 

p~zo [51 
p z =  1 - ~ "  
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The mixture ratio of  specific heat ? is given by [1.9] (denoting [9] in Part I) and figure 1.1 (again 
denoting figure 1 in Part I) in terms of  t~, 5 and ~c without change. Here 6 is the ratio of  the heat 
capacity of  the particles to that of  the gas at constant pressure. It must be emphasized again that 
both ~b and ~ remain constant in the expansion region upstream of the minimum flow area, directly 
as a result of  the previous assumptions rather than from any additional restrictions. However, when 
the initial receiver mass fraction is different from that of the supply, then obviously the receiver 
mass fraction must change during the transfer and resulting mixing there. Since ~ is a constant 
bounded by unity and ~o, an ideal carrier gas undergoes a true polytropic expansion process, while 
the mixture behaves as a modified polytropic fluid because Z # 1 if 0 # 0 even when Zc = 1. 
Similarly, the AN carrier gas with ZG ~ 1 can only be considered as pseudo-polytropic. 

The corresponding mixture adiabatic equilibrium sound speed in the low frequency limit for 
constant Pd is 

a = aG (ff--~c)I~(1--(~)11/2, [6] 

where ao = ZGa~ and a~i = ( ~  R G TG) L/2 are the AN and ideal gas sound speeds, respectively. All 
the mixture sound speed behavior in this limit involving its minimum, and the corresponding 
particle volume fraction where the minimum occurs, remains unchanged from that given in 
Chenoweth & Paolucci (1990b). Thus, as in Part I, it is the possible existence of  this minimum where 
a ,~ a C, that can greatly reduce transfer times and that makes the analysis which follows so 
important. 

2.2. End-state expressions 

Since the end-state can be determined under various thermodynamic conditions without the use 
of  any transient information, it often provides valuable insight without much effort. This is 
particularly true for investigating the parameter dependence of  the always present subsonic 
approach to pressure equilibrium. Also, in some cases the transient process may not be as important 
as the nature of  conditions following the pressure equilibrium. 

The final state, where both pressure and thermal equilibrium exist, has the pressure 

[ ( I+p 'V ' ) (1 - - ) .G , (0 ) )  ] 
p(oo)= T(.~) 1 + v ' - ~ , ( 0 ) ( 1  + p ' V ' )  ' [7] 

where the definitions of  T(~) ,  T2(0), V' and V2 are given in Part I, using subscripts 1 and 2 to 
denote supply and receiver values and the bar to indicate non-dimensionalization by the 
corresponding initial supply quantities. The quantity 

P' = Po,PG2(0)(0) = )-G, (0) + [1 -- ).G, (0)1 p--~-~j [8] 

is defined so that pressure relations are in their simplest form in terms of the gas molecule volume 
fraction parameter 2ol (0)= Pcl (O)/d~ initially existing in the supply. This simplification is to be 
expected because the particles are not contributing to the pressure other than via volume 
displacement, as accounted for in V' (see [I.25]). The final supply volume fraction 

{ 01 (oo) = 2, (0) + [1 - 41 (0)] P(oo)J [9] 

is best expressed in terms of  the combined initial supply volume fraction 21 (0). The final receiver 
volume fraction is then determined by 

02(oo) = 02(0) -F 1 - 01(oo) 
v~ ' [ml 

where 

- r 2  ( U ) l J  

is related to other initial condition parameters. 

[11] 
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In the adiabatic limit the supply pressure can be written as 

[. ],,, 
P' = kO~-' - 2, (O)J [l 21 

and the receiver pressure as 

p 2 =  - - -  ' 

o1 ( o ) -  (o )+  - o,(o)] 

while the expressions for 02, ~2 and ~ remain unchanged from Part I (see [I.30]-[I.32], respectively). 
Therefore, at adiabatic equilibrium, where P, =/~2 and t = t~q" 

[1 - 2, (0)]  [1 + flY2 T2(0)] 

P' = (fl -- a ) f f20 , (0)0 , -  {01(0) - V2[1 - 02(0)]}(1 - 0 ,  + flV2) [14] 
1 + (1 + f lV2)[O, (0)  - 2 , ( 0 ) ]  + 

To define the adiabatic end-state analogous to the isothermal expression 0, (oo), [14] must be solved 
for 01 = 0, (t~q). We note that the expressions for ~ and fl are given in Part I (see [1.38] and [1.39]), 
however, the new expressions for p '  and/52(0 ) = 02(0)/~2(0) must be used. In addition, the relations 
[I.40] and [I.41] between ~, fl, ~'G, 7,, ~b,, 02(0) and ~2(0) remain unchanged and still dictate the 
nature of the parameter dependence for various special cases when combined with the new 
equations just given. Since this parameter dependence is the same as that of the subsonic approach 
to pressure equilibrium, it is important to briefly review it at this point. 

For the general adiabatic problem, the number of parameters is minimized if the following initial 
data are specified: 7,, 7c, 01(0), 02(0), P2(0), ~(0),  if2 and 21(0). Then no explicit dependence on 
t~2(0), q51 or 6, is present in the solution of  01 (teq). That is, the particle volume fraction in the supply 
vessel at adiabatic pressure equilibrium is independent o f  q51 and 61, so long as together with 7c~ 
they yield the specified value of 7,. However, if ~b2(0)_or ok2(0) is specified as initial data rather than 
02(0), then clearly ~b~ is also required to determine 02(0) and hence the solution 0,(teq). It should 
be noted, on the other hand, that the dependence on q~, is usually weak for 0 < ~p2(0) < 1. Two 
exceptions to this result occur. First, if there are few or no particles initially present in the receiver 
so that ~2(0) ~g 1 and 02(0) ~< 1, then ~b~ and 6, do not explicitly influence the end-state solution 
other than to determine y, via 7c. Second, if the same fluid present in the supply is initially present 
in the receiver at a lower pressure so that ~z(0) = 1, then the solution 0, (teq) depends only on ,;,, 
V2, 21(0), P2(0) and Tz(0); i.e. arbitrary 7~, ¢kl, 6,, q~2(0), 0 

,(0) and ).~l (0) are allowed as long as their combination produce the specified values of 7~, 2, (0) 
and ~2 (0) = 1. It is clear then that as many as 9 or as few as 6 independent parameters are needed 
to determine the adiabatic end-state conditions, depending on the nature of the problem and how 
it is specified. 

Some of the limiting solutions of  [14] are given in the Appendix, and the following transient 
results illustrate much of  the parameter dependence just outlined. 

2.3. Critical parameters 

The integrated form of the steady, one-dimensional Euler equation, the sound speed expression 
written in terms of  the pressure ratio and therefore the governing equation for the critical pressure 
ratio K = P . / P ,  are all exactly the same as given in Part I by [I.43], [1.44] and [I.46], respectively, 
provided 0, is replaced by 2, in those equations. Here K, the ratio of the minimum area sonic 
condition to the stagnant supply pressure, is not constant, as for a pure ideal gas, but changes 
during the transfer as a function of the supply volume fraction 2,. The governing expression for 
K is quadratic in 2, = 2, (0)01 and its solution is 

r ,  [15] 
)h - 1 + F ~  ' 

where 

A + x / -~  + B [16] 
F1 = 71K(r' + D/~ 



COMPRESSIBLE FLOW OF A TWO-PHASE FLUID--II 6 7 3  

and 

A = l - (y1+ l)K, B = ( ~ ) [ 1 -  (~ - )K( r ' - ' ) /~ ' ]K  (~'+1)/~' [17] 

Equation [15] explicitly relates 21 to any K/Ko for given 1 ~< 71 ~< Yc, as in figure 1.4, provided the 
abscissa in that figure is changed from 01 to 21, and the 2~ (0) < 1 limit of  K is represented by 
K0 = [2/(yl + 1)]w(~t-1) now. In addition, with the same change of variables, the approximate 
expression for K/Ko written as a quadratic equation in 2~ is given by [I.49]-[I.51], and those 
expressions are accurate for ~.1 ~< 0.6. Among the related critical ratios given by [I.52], T,/7"1 and 
p ,  a,/Pl a~ are not altered but a,/al and p,/p~ = O,/0~ are obtained by replacing 0~ by 2~; however, 
a more complex expression for the critical gas to particle density ratio now results: 

r ,  1 - 01 
r, 21 - 01 - (1 - )~I)K -l/~l" [18] 

2.4. Transient equations 
We assume, as in Part I, that the finite volume reservoirs containing the nearly stagnant 

homogeneous gas/particle mixtures are joined by a nozzle or an orifice of negligible volume to 
control the flow. The transfer is treated as quasi-steady in the sense that the steady integrated Euler 
equation is applied across the flow control region at each instant of  time, as in pure gas analyses 
(Chenoweth 1974, 1983). 

Similar to the end-state analysis, useful quantities are easily calculated algebraically once 0~ or 
02 is found. The rate of  change of  the supply volume fraction for the adiabatic case is found to 
be given by the following non-linear ordinary differential equation: 

d--~ = ~ { ~ l ( O ) J f ' [ O l l - ~ l ( O ) ] y - I / ' ~ l }  - I  2(1_~1)[-L_~,~l(O).lYl-I 1/2 
-1 - : t , ( o ) ]  

{[ Ol ~'| (0) l  (l--y)'4-( 'l ~ (| __yl_I/71)} I/2" [19] 
x I + l }  

The above equation depends on the pressure ratio 

Y = ],-P~ /1'1 when K < Pz/P~ <~ 1, [201 

corresponding to sonic or subsonic exit velocity at the minimum flow area Ae. Here the velocity 
at A e has been normalized by the initial ideal gas supply sound speed. Thus, the non-dimensional 
time is 

[Aea~2~ (0) ] V2)t, [21] = ( 1 +  

and the V2 sealing is included to aid in the treatment of  the charging V2 < 1 and discharging V2 >> 1 
limits. The differential equation [19]_must be integrated from z = 0, where 01 (0) = 1 to T = %q where 
01 approaches the end-state value 01 (t~q). Obviously, K(yl, ;tl (0)01) and P2/PI are required as the 
integration is performed. The receiver volume fraction is obtained from the relation 

= 1- 1 
V2 ' [22] 

so that additional parameters enter from it as well as through the calculation of  P2/PI. 

3. T R A N S I E N T  RE SUL T S 

All solutions of[19] in the limit '~GI (0) ~ 1 and reported in Part I have been obtained by numerical 
integration, with the exception of  the dilute volume fraction limit 01 (0)  ~ 1. We note that the 
analytical dilute volume fraction limiting result was easier to understand than the more general 
numerical solutions because of  the reduced number of  parameters involved in that case. Here, more 
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emphasis is placed on analytical approximations valid not only for non-negligible Lo, (0) but also 
non-negligible e,(O) or J.,(O) as well. However, numerical solutions of [19] are still obtained for 
comparison with the approximate analytical expressions and in cases where no approximate 
solutions are available. 

3.1. Approximate sonic solution 

An approximate sonic solution, valid when p,/p, < K, is obtained upon expanding all terms on 
the r.h.s. of [19] involving 3,) including y since y = K(y, , Iz, (O)&), for I, (0) 4 1, and retaining only 
the linear terms in the integrated result. The constant scaling factor [I - ,$(0)](Y,-‘)/2 is not 
linearized, however. This procedure, although not rigorously justifiable, produces results which are 
accurate for il, (0) G 0.6 over the entire range of 1 < y, < 5/3, and even for larger A, (0) in narrower 
ranges of y, . This unusual circumstance is apparently due to fortunate off-setting or canceling of 
higher-order effects. The same procedure with similar results was used by Chenoweth (1983) for 
a pure AN gas. Mathematically, such behavior simply indicates that the integrands evaluated as 
described above are nearly linear in A, (0) over a wide range of this parameter. 

The resulting solution is, of course, independent of all receiver parameters including VzT2, F*(O), 
&(O), e,(O) etc., although the time at which it ceases to be valid (unchoking time) does depend 
on these parameters. This solution for 3, is given implicitly by 

( > ‘e:;(0) t = ~1 _ n,(o)p -~,qjjy -Y~)I~ _ 1) + 4(gt3-~,)/2 _ 111, 

I c 

where 

(T =A.,(O)(l-&) 5 y. 
( > I I 

v31 

Note that y, and r,, given by [I.91 and [I.601 contain the only effects of finite 4, and these effects 
may be present even when A, (0) 4 1. Also notice that yo only enters implicitly through y, , z, and 
uo,, (0). For finite 1, (0), the term multiplied by u in [23] causes a linear time scale compression, 
while the constant scaling factor [ 1 - 2, (0)] (’ _ y,)‘2 causes a non-linear time stretching. For increasing 
2, (0), the time scale compression always dominates until 3, is significantly below 0.15 (a number 
which decreases with decreasing y, < yo) for all n,(O) < 0.6. 

An important point to observe is that since the receiver pressure does not enter in obtaining the 
sonic solution, n,(O) is the only volume fraction parameter present. In other words, during sonic 
flow the individual contributions of gas molecules from ;1o, (0) and particles from 8, (0) to 11, (0) are 
indistinguishible since only their combined mixture effects enter. Similarly, on the non-dimensional 
time scale, only the mixture ratio of specific heats y, affects the results. Of course in the pure gas 
limit, 8, (O)+O [thus 1, (O)+&, (0)] and 3, = p, , the solution [23] gives the supply gas density time 
history. The supply pressure time higory in terms of the same parameters is obtained directly by 
substituting 3, = (2, (0) + [ 1 - A, (O)]P; “7,) - ,. The-receiver part@e volume fraction time history 
involves the additional parameters V2 and 0,(O), since O,(t) is obtained by inserting 
3, = 1 + Vz[g2(0) - g2] &to the solution. In the limit V2 4 1, it is apparent that 8, no longer changes 
significantly relative to e2. 

A more complex solution valid only for the isothermal limit y,+ 1 was given in Part I as [1.89]. 
In this isothermal limit, the present solution 

[,.,,, (0) (1 -$J!‘] t = -e’12 ln8, + 21, (O)(e”’ - I)(& - 1) [251 

is simpler and almost as accurate. This solution is analogous to the pure AN gas solution given 
for the isothermal limit by Chenoweth (1983), except for slightly different scaling constants due 
to the different boundary conditions used here. In addition, the isothermal results given in figure 
I.7 with 8, (0) as the parameter, are also valid here if the curves are simply relabeled with A, (0) as 
the parameter. In figure 1 we give similar results for y, = 7/5 and I, (0) = 0.0,0.3 and 0.6. The curves 
are from the numerical solution of [19]. The symbols are from the very simple approximate sonic 
solution [23], showing that for all practical purposes we know the solutions are the same for all 
parameter values of interest. 
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Figure 1. Sonic flow supply particle volume fraction vs reduced time with 2m (0) as the parameter: lines 
are exact (from [19]), symbols are approximate (from [23]). 

3.2. Conditions at end of sonic flow 
Since by definition /~ , (0 )=0 , (0 )=  1, the sonic flow region will exist initially only if 

P2(0) ~< Kc = K(0, = 1) = K(~,, 2, (0)). On the other hand, a subsonic region will always exist prior 
to the pressure equilibrium (P2/P, = 1) occurring at T = ~  if P2(0) ~ I. At the time ~.  when the 
flow first becomes subsonic, K = K . -  K(T.)  and 0, = 0 , . -  0, (~.)  are obtained by solving the 
equation P2/P, = K in the analogous way we obtained the end-state conditions 0, = 0, (~,q) from 
solving the equation P2/P, = 1. Although both the sonic and the end-state conditions can be 
established without detailed knowledge of  the transient solution, ~.  and ~ can only be obtained 
by integrating the governing equation from T = 0 until these conditions are reached at ~ = T. and 
T = ~ ,  respectively. Also, since the subsonic region is bounded by these two limiting times, it can 
be expected that both their values depend on the same receiver parameters determined for the 
special eases in the end-state analysis. 

For ~2(0)= 1, 

P2 1 - 2, - {1 - 2,(0) + 72/52(0)[1 - 2, (0)02 (0)1} LI -- 2i- ' (0)]  

= 2, (0) -- 2, -- 7211 -- 2, (0)02 (0)1 [26] 

so that when /~2//~, = K and 2, = 2,(~, ,K) (see [15]) are substituted, a single exact algebraic 
expression for K .  = K,(~, ,  21(0), 72, P2 (0), 02 (0)) is obtained which generally must be solved 
numerically. Of  course 02 (0) may be eliminated in favor of  T2(0 ) if desired. In addition, we have 
0 , .  = 2,. /2,(0),  where 2, .  = 2,(~,, K . ) .  Figure 2 gives K .  normafized by the 2,(0) ,~ 1 limit K0 vs 
/~2(0) with 2, (0) as the parameter for four values of  V2 when ~, = 7/5 and/ '2(0)  = 1. It should be 
noted that the discharging limit 72 ~> 1 is actually independent of  T2 (0) and ~2 (0), so those results 
are more general than the other three cases. The curves are from the numerical solution outlined 
above, and the symbols are for the approximations to be discussed below. As expectod, and as can 
be seen in figure 2(a), K .  is independent of  /~2(0) in the charging limit 72,~ I, sine~ 
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Figure 2. Critical pressure ratio at the end of sonic flow vs initial pressure ratio with 21(0_) as the 
parameter: lines are exact, symbols are approximate; (a) P2 '~ 1, (b) V 2 = 1, (c) P2 = 3, (d) V2 >> 1. 

0] ~ 1 there and K ,  = K¢ = K(T1,2, (0)). For the other values of 172, K ,  decreases from the vacuum 
limiting value greater than K¢ at P : (0 )=  0 until it reaches K ,  = Kc = P2(0). The corresponding 
values of  T,/z¢ are given for the same parameters in figure 3 as the curves obtained by numerical 
integration until P2/P, = K ,  is reached. Both K,/K0 and T,/~c show increased non-!inearity and 
increased dependence on P2(0) as 172 increases and also as 2,(0) increases. In addition, as 2,(0) 
increases, while the other parameters are fixed, ~,  decreases greatly. 

In order to derive approximate analytical solutions valid for subsonic flow which was initially 
sonic, explicit expressions for z ,  and K ,  or 0, ,  must first be obtained. An accurate expression for 
z ,  for all cases except 92 '~ 1 is obtained using the approximate sonic solution 

~--~* = [ I  - 2, (0)1 (' - r')12[(Ol],- r')12 - I )  + a(~3,  -r')12 - I )1( I  + ]17~-'), [27] 
Tc 

so that only_K, or 0j ,  is needed from the relation 21 , = 21 (0)~,, = 21 (~1,, K ,  ). Furthermore, using 
0, = 1 + ~'2[02(0) - 02] with the sonic solution in the 175 '~ 1 limit, we obtain 

= ,7 [ 2 8 ]  
• o L ]  - 
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where 

r /=  ( ~ - - ~ ) [ 1 -  ~ ( ~ ) ] [ 1 -  ,~,1(0)02 (0)] [1 - -  ~,t(0)] ( I -h) /2 ,  [29] 

so that only 02. is required in this case. Here, since 0 1 , ~ l ,  then K .  = K~ = K ( h ,  2l(0)). In order 
to be consistent with the rest o f  the approximations, it is best to use the explicit expression for K~ 
written as a quadratic in 2, (0) (see [I.49]), since an approximation of  K linear in 2 does not have 
the necessary accuracy for 2, (0) ~< 0.6. 

For the special case ~2(0) = 1, when V2 '~ 1 

02, -- 02 (0) -- [Kc - / ~ 2  (0)] [1 -- 2, (0)02 (0)] 
~,, + 2 I ( 0 ) ( K ~ -  1) ' [301 

so that 

z, I K~-)~2(0) 1 [31] 
--='I~c , + ~ - 2 ~ 6 j ~ -  1) 
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gives the time where the sonic flow ceases to exist. These results are shown in figures 2(a) and 3(a) 
by the symbols, with excellent agreement with the more accurate numerical results. 

An explicit expression for 03, which is valid for arbitrary 17: can be obtained by equat ingthe 
F2/Pl relation for ~2(0)= 1 to the expansion for K in terms of 2, = 4,(0)01. If we linearize, 03~, 
it is then found that only the linear term in 2! (0) needs to be retained so that 

0 / /  =)~ 1/?1 '~1(0) ~1 --71--Ko[1 + V2( 1 -- Ko)(l +71)1 
y1(1 + V:Ko) 

+ Zl/~'{~1 + Ko + V2Ko[?~ + 02(0)1 - [1 + V2P2(0)0:(0)]Z }~, [32] 

where 

1 + V2K0 
Z = 1 + ff2P2(0)' [33] 

can be used to calculate z,/zc directly from the initial reservoir parameters. The mathematical 
reason for linearizing the reciprocal of 01, is easiest to see when the discharging limit P2 "> 1 is 
extracted from the above expression since then 

5 =  P2 (0) [-OL 1- --- -2' (0)1 ~' [34] 
e l  L 1 -- 41 (0) J 

and 

- ( K0 ) I/';' [-/ /G \ 1/'~, ( 1)1 
0r, l =  p - - ~  - 4 1 ( 0 ) L L ~  ) -(1--Ko)1+~ , [35] 

which produces accurate results valid for all parameter values including ~2(0) # 1 [see the symbols 
in figures 2(d) and 3(d)]. This is due to the fact that P2(0) is the only receiver parameter which 
appears in the solution in that limit. In addition, figures 3(b) and (c) show good agreement with 
numerically integrated results when V2 = 1 and V2 = 3. However, again as for the limit if2 ~ 1, the 
quadratic term in 23, is required to accurately predict K ,  when 23(0)~< 0.6 [see the symbols in 
figures 2(b) and (c)]. 

3.3. Approximate subsonk charging solution for ~2(0)- 1 
When ff2~ 1, 01 ~ 1 and Pl ~ 1 so that 

[ ] 
~:  - ~ : ( o )  = [ P :  - P : ( o ) I  D',--- ~-b-~i ~ E)/  [361 

and 

T2 (0)P2 [7, - 2, (0) (1 - P2 (0))1 
T2 = T2(o) [1 - x, (0)1 [P2 - P:  (0)1 + P2 (0) [~, - 41 (0) (1 - P2)] '  [3 7] 

where ~2(0)= 1 and then it follows that 

. . . . .  
0:(0) = 2, (0) + [1 - z, tU)l p - ~  • [381 

Obviously, if 02 or -P2 is known as a function of time, then these equations determine the entire 
charging solution. 

For example, in this limit when 03 = 1 + ff : [0:(0)-  02] is used in the sonic solution 

z ~ _Pz- P2¢0)_ .] [39] 
zc k?, - 21 (0) (1 - P : ) j '  

which is valid for P2 ~< Kc and t/ is given by [29]. Here/¢~ = K(0, = 1) is given by figure 1.4 with 
03 replaced by At(0) and ~1 as the parameter, or figure 2(a) for ~,=7/5. The quadratic 
approximation for K(?I, 21) from [1.49] is consistent with the approximations being used here and 
allows explicit calculations. 
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The corresponding subsonic solution valid for K~ < P2 ~< 1 is obtained as in Part I via a variable 
w using 

Y = P2 = (l -- w2) ~'/(~' - ') [40] 

This variable w is bounded by 0 ~< w < w0 and it is the minimum flow area Crocco number 
(Chenoweth 1974, sect. D). Physically w represents the fraction of the total enthalpy converted into 
kinetic energy at that point. The subscript 0 identifies the starting subsonic conditions defined by 

J'w, = (I - K~"- ,)n,),/2 if P2(0) ~< Kc, 
Wo = [ [ I  - P~(0) ¢~' -,)n,],n i f  P2(0) > K~, [41] 

where the related non-dimensional time is 

0 if -P2(0) ~</~, [421 
z0= * i fP2(0)>K~.  

Here ~. /% is given by [31] and figure 3(a) for 71 = 7/5 and T2(0) = 1. The non-dimensional time 
in this limit becomes 

= (AcaGil (0)) 
\ I,'2 t, [431 

so using [40], [19] can be integrated analytically for small 21(0) to give 

T ~'~O--~-T w 

where similar to the sonic case, only linear first-order dependence on 2, (0) is retained while the 
integrals are evaluated. The scaling constant x~, is not linearized, however, 

= ] _ _ _ ~  K~, + l)/,, 1 - 2~ (0) 0~ (0) + 

with % given by [I.60]. The function F = F(w) is given by 

F(w)=(~) {w-1[(l - w2)(2"-')/(',-1)- l] 

+r3. +B ' 8, 

in terms of  the integral 

(w) = .f (1 - w 2),./2 dw = (1 + m)-  I[w ( 1 - w 2),./2 + I,./2 mI,./2 (w )]. [47] 1 

Here m = 2 / @ ~ -  1), so that 1 < ~  ~< 5/3 corresponds to ~ > m / >  3. Since 1-1/2 = sin-I w and 
I0 = w, then the integrals I,. n can be evaluated in closed form recursively using these terminators 
for integer values of  m/> 3 or ~,~ = 5/3, 6/4, 7/5, 8/6 . . . . .  These values of  ~'1 yield closed-form 
charging solutions when 2~(0)# 0. These requirements did not exist in Part I, where 2, (0)=  
0~ (0) ~ 1 was the only charging solution given for similar approximations. Note that (from [44]) 
when 2, (0 )=  0, F(w) and subsequently I,./2(w) are not required. When 2~ ( 0 ) #  0, 1,./2 introduces 
only polynomials in w of degree m + 1 for m even, but it is always transcendental for m odd. 

The end-state solution given in the Appendix for this limit is reached at pressure equilibrium 
J~2 = 1, where w = 0. The time at which this adiabatic pressure equilibrium occurs is obtained by 
noting that F(w)--*O, so that 

,=.o+..{wo[, , ,  ,_, ,,8, 
and then the transient solution can be expressed as 

Z--~ Tcq- "¢w{W[1- ,~1(0) ( ~ 1  2 ) ]  -- ,~l(O)F(w)}. [49] 
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Although this is not an explicit solution for w(Q or P2(z), using [40] allows ~ to be 
calculated directly for any 71, P2, 21 (0), /52(0 ) and T2(0) or 02(0). The end-state solution which 
this solution approaches as r ~Zeq is not an approximation for small ).1(0) and furthermore, 
it is also exact for all values of 1 ~< 71 ~< 5/3, since it is derived without use of the transient 
solution. 

Results for the case when 7, = 7/5 and ~(0) = 1 are given in figures 4(a) and (c), where the 
symbols are from approximations [48] and [49] with definitions [36] and [40] and the curves are 
from the numerical integration of [19]. Surprisingly, just as for the sonic solution, the small 21 (0) 
approximation is actually valid for values as large as 0.6. Figure 4(a) gives Teq/Zc vs P2(0) for 
2t (0)= 0, 0.15, 0.3, 0.45 and 0.6. These results include initially sonic as well as initially subsonic 
cases. The corresponding results for 02 - 02(0) vs z/Z~q are given in figure 4(c) for the case where 
P2(0) = 1/2. It is obvious that more error occurs in Zoq/% than in the transient solution in terms 
of r/req. When 21 (0) is large, more errors occur for cases which are initially sonic than for cases 
which are initially subsonic. 
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3.4. Approximate subsonic discharging solution 
When 172 >> 1, P2 ~, P2 (0), 02 ~ 02 (0) and T2 ~ T2 (0), so that 

p (0) 2'(°)T' [501 
E ~ L 1-2,(0) _i 

and the resulting solution will be valid for all ~2(0) values because P2(0) is the only receiver 
parameter which enters the solution. Since 21 = ~1 = 01 and ~ =/~,-1)/~,, the entire transient 
solution follows immediately once 01 is found. This has already been done for the sonic portion 
of  the discharge via that approximate solution. 

The related subsonic solution is obtained for K ,  < y ~ 1 as in Part I via a variable z using 

y = (1 + Z2) yl/(I -70 [51] 

The new variable z is bounded by 

0 ~< z ~< z0, [52] 

and it is proportional to the minimum area Mach number (Chenoweth 1974, sect. E). The subscript 
0 identifies the starting subsonic condition defined by 

J'z, - [K~ -~0/~, _ 111/2 if P2(0) ~< K , ,  [53] 
z0 = ~.[~2(0)tl _r,)/r, _ 111/5 if -P2 (0) > K , ,  

where the corresponding non-dimensional time is 

= J ' r ,  if P2(0) ~< K , ,  
"~0 [54] (0 if P2(0) > K , .  

Here z,/z¢ is given by [27] and [35] as well as shown in figure 3(d) for 71 = 7/5. Figure 2(d) gives 
the related K ,  for ?~ = 7/5. The non-dimensional time in this limit becomes 

(A a~l (0).) 
z = ' t, [55] 

so that with [51], [19] can be integrated for small 2j(0) to give 

z = z0 + z,{[1 + 221(O)][J,/z(Zo) -- Jn/z(z)] + 2, (O)P2(O)I/~'[G(z) - G(z0)]}, [56] 

where, as in the sonic case, only linear first-order dependence on 21 (0) is retained in the evaluation 
of  the integrals; as before, however, the scaling constant z, is not linearized, 

Tz=(~-'~-)l/2K(Z"+l)/2r'l~2(O)tl-;q)/2't[[[1,ce - - - -  - 2 , ( 0 ) ] { 1 -  21(0)[1-  J~2(0) ' /~"]}] ,  [57] 

with z¢ as given by [I.60]. The function G = G(z) is 

G ( z ) =  _- z(1 +z2)(s-r')/(r'-z)-t (Y, Z ~  J,(z) 

+ z- ' (1 +z2)l/t:"-l)[1 - ( 1  +z2)  '/(r'-')] -~1-- 1Jn/2(z) ' [58] 

in terms of  the integrals J ,  and J./2, defined by 

J'(1 + z2)" dz = (1 + 2n)-l[z(1 + z2)" + 2n J,,_ i (z)]. [59] J.(z) 

Here 

n = m - 2 = 2 ( 2 _ _ -  Yl ) 
71 -  1 ' [60] 

so that 1 < 71 ~< 5/3 corresponds to oo > n i> 1. Since J ~/2 = sinh- J z and J0 = z, then the resulting 
discharging integrals Jn/2 and J~ can be evaluated recursively in closed form for integer values of  
n I> 1 corresponding to )'1 = 5/3, 6/4, 7/5, 8/6 . . . . .  Notice that here only the J ,  integrals drop out 

IJMF 18/5--.-D 
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for '~1 ( 0 )  '~ 1, so that the restriction on ),~ giving closed-form results remains via .1,/2 even when low 
pressure dilute mixtures are discharged. When 2] (0) # 0, Jn always introduces polynomials in z of 
degree 2n + I, but .1,/2 introduces polynomials of  degree n + 1 only for n even, and it always has 
logarithmic and square root behavior when n is odd. The end-state solution for this limit is given 
in the Appendix, and it is valid for all values of 1 ~< y] ~< 5/3 with no restriction on ~](0). 

At pressure equilibrium P]-'*P2(0), Z-*0 and Jn/2-'~Jn-'+O, so that the time required to reach 
adiabatic pressure equilibrium is 

~Teq = T0 + ~z {[l "q- 2~] (0)]Jn/2 (z0) - -  ).] (0)P2 (0)  l/yl a ( z 0 )  } [61] 

and the related transient solution can be expressed as 

"[7 = T e q  - -  1S z {[1 -t- 2,,t] (O)]Jn/2 ( z )  - -  2, (O)P2(O)]/7'G(z)}. [62]  

Results are given for this case in figures 4(b) and (d) for 71 = 7/5, where the symbols are from 
approximations [61] and [62] with definitions [50] and [51] and the curves are from the numerical 
integration of [19]. Again the small 21 (0) approximation is valid for values as large as 0.6. Figure 
4(b) gives %q/re vs P2(0) for 2] (0 )=  0, 0.15, 0.3, 0.45 and 0.6. These results include both initially 
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Figure 5--continued opposite. 
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sonic as well as initially subsonic cases. The corresponding results for 0~ vs zlz~q are given in figure 
4(d) for the case where P2(0) = 1/2. Again, as for charging, the largest errors occur at small P2(0) 
for ~q/T0 rather than in the transient solution in terms of  ~/Zeq. 

3.5. Numerical results for finite i72 and ~:(0) ~ 1 
Although approximate solutions for finite ~2 are possible when ~2 (0 )=  1 [and are similar to 

those for an ideal gas (Chenoweth 1974, sect. F)] they are not included here. 
Before numerically investigating the parameter dependence for more general cases, an example 

with finite if2 is given for ~2(0) = 1. Since the K .  and T. results showed that F2 = 1 is very similar 
to the if2 g 1 case, we give results for 172 -- 3 in figure 5, where 7, = 7/5 and •2(0) = 1. Figure 5(a) 
gives z~q/~¢ vs _P: (0) with 21 (0) as the parameter, and the corresponding receiver and supply volume 
fractions are given vs T/~q in figures 5(c) and (d) for P2(0)=  0.01 and figures 5(e) and (f) for 
P2(0) = 1/2. The striking difference in these two cases is due to the substantial time spent with sonic 
flow when P~(0 )g  1, where the effects of  21(0) are both weaker and opposite to that present in 
the subsonic region. Also, since it was shown in the end-state section that the number of  
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independent parameters is minimized when ~5 (0) = 1, we compare some results in figure 5 where 
~bs(0) ,~ 1. In that case the additional parameters 7G and 0t (0) enter the problem. Figure 5(b) give 
Z_oq/Zc__vs/~5(0) for 7G = 5/3 and 2, (0) = 0.6 with 01 (0) as the parameter. Figures 5(g) and (h) gives 
0 5 -  05(0) and O, vs z/~q for P2(0)= 0.5 with the same parameters. It is clear that in this special 
case the dependence on 0, (0) is relatively weak and of  course it is even weaker for smaller 2~ (0). In 
these plots 0, (0) = 0 and 0, (0) = 0.6 correspond to a high-pressure supply with small particle volume 
fraction and a low-pressure supply (ideal gas limit) with large particle volume fraction, respectively. 
These cases are not different when ~b 5 (0) = 1, but some small differences are clearly present when 
~5(0) '~ 1 and F5 = 3. Note that here q~l and 51 are arbitrary, so long as they produce 71 = 7/5. 

It has already been shown, via end-state results, sonic conditions and transient solutions, that 
the discharge limit Fs~> 1 depends on only 71, 21(0) and /~(0), and that there is increasing 
dependence on other parameters as V2 decreases. For this reason the remainder of the examples 
will be given for the V5 '~ 1 charging limit, in an attempt to show the maximum effects of  the 
additional parameters. First we repeat the case shown in figures 5(b), (g) and (h) using F 2 ~ 1 to 
show that, in this limit, the effects of  0, (0) are much greater than shown previously for V: = 3 and 
fixed 2,(0). These results are shown in figures 6(a) and (c). Physically the reason for the vast 
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difference in the parameter dependence for the charging and discharging limits is due to the effect 
of  the receiver pressure changes. The additional parameters which allow the problem to distinguish 
between the molecule and particle volume fraction contributions to the combined parameter ~ (0) 
are not introduced into the discharging limit, since the receiver pressure is constant there. On the 
other hand, when the receiver pressure is changing rapidly, as for charging, the difference is 
maximized due to the fact that we have assumed that particles only affect pressure via volume 
displacement in contrast to the gas AN-EOS. Finally, to show the effects of having a substantial 
part of  the receiver initially occupied_by particles, the same problem is repeated with 0e(0) - 1/2 
as the fixed parameter, rather than ¢2(0) < 1 which corresponded to 02(0) < 1. These results are 
given in figures 6(b) and (d) and show reduced but still significant effects of 01 (0) when h I ( 0 )  is 
fixed• 

As a final example we briefly look at the effects of material properties in situations where they 
can affect the results. First, we examine the case for ~2 (0) < 1 using a diatomic carrier gas rather 
than a monatomic one, as has been done to this point• The 0i(0) = 0.3 case shown in figures 6(a) 
and (c) for ?G = 5/3 is compared with results for 7~ = 7/5 in figures 7(a) and (c), where obviously 
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Figure 7. Effect of material properties on charging solutions, zm/z¢ vs Pz.(0): (a) ~2(0) < I and 7o = 5/3, 
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~2(0)--- 2 and ~, = I, I0. 
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6~ and ~b~ must combine with these ~o values to produce ~ = 7/5. We see that the effects of YG are 
significant but not large. In addition, we show similar results for ~2 (0) = 2 in figures 7(b) and (d), 
since it was shown that when ~2(0) ~ 1 and ~2(0) is also not negligible, then tk~ or 61 can also 
independently affect the results. In this final case 2~(0) = 0.6, 01(0)= 0.3, Yt = 7/5, ~G = 5/3 but 
6~ = 1 (~b t = 2/7) and 6~ = 10 (q~ = 1/26) are compared. Again the effects are significant but not 
large. 

It should be noted, that similar to the increase of V2 towards the discharge limit, the decrease 
of P2(0) below K .  generally weakens the dependence on these additional parameters. The reason 
for this effect is that more time is spend with sonic flow, which depends on only y~ and 2~ (0) with 
~b~, tS~ and ~G being confined to the time scale factor T c and the mixture ratio of specific heats 7~. 
At any rate, it appears that the more simple ~2(0)= 1 results can often be used to estimate the 
behavior of more complex ~2 (0) :~ 1 cases which depend on more parameters. 

4. CONCLUSIONS 

The analysis of Part I for an ideal carrier gas has been extended to include non-ideal carrier gases 
which can be described adequately by an AN-EOS. These gases include helium, neon, hydrogen 
and their isotopes at low temperatures extending substantially below room temperature, as well 
as most other common gases at high temperatures. 

It is shown that the expanding mixture or pseudo-fluid behaves as a modified AN gas which is 
pseudo-polytropic. This result occurs when the fluid is described in terms of the mixture ratio of 
specific heats and mixture volume fraction, each of which combine the individual effects of the 
particles and the gas molecules. 

It is demonstrated that there are three cases where all results, including transient non-dimensional 
solutions, depend only on these mixture parameters (in addition to the usual initial vessel volume, 
pressure and temperature ratios where appropriate) with no explicit dependence on the individual 
contributions from particles or gas properties. One of these cases consists of the sonic flow portion 
of the transfer, if one exists. A simple, approximate sonic solution valid for most parameter ranges 
of physical interest, is given and compared to numerical results to show the mixture parameter 
dependence. Another case which does not distinguish between the separate contributions from the 
gas and the particles involves the single-fluid problem, where the initial mass fractions in the supply 
and the receiver are the same. Approximate expressions for the time of the end of sonic flow and 
the corresponding conditions there are given and are shown to describe the single-fluid problem 
over the entire range of parameters, including all vessel volume ratios. In this case the approximate 
subsonic flow solution is given and favorably compared to numerical results for the small volume 
ratio (charging) limit. The third case which involves the reduced number of mixture parameters 
is the large volume ratio (discharging) limit. The subsonic discharge results, including the 
approximate solution, are valid for all initial receiver mass fractions even if they are not the same 
as the supply, since the receiver conditions remain essentially unchanged, while the supply 
discharges to the receiver pressure level. 

In the subsonic regime for finite V2, with the exception of the special single-fluid case, a numerical 
solution is necessary when the changing receiver pressure (and parameters that it is a function of) 
enters in the differential problem. Results are given which show the effects of parameters describing 
individual particle and gas contributions in instances not covered by the three special cases. The 
dependence on the additional parameters decreases as the receiver to supply volume ratio increases 
and as the initial receiver to supply pressure ratio decreases below the critical value. However, the 
results show that often the more simple single fluid results can be used to adequately estimate the 
behavior of the more complex cases which depend on the additional parameters. 

Finally, the hierarchy of controlling independent dimensionless parameters, varying from as few 
as 6 to as many as 10 depending on the nature of the problem and how it is specified, has been 
established by means of the end-state analysis and limiting solutions given in the Appendix. The 
limiting solutions also reveal the conditions under which a significant mass defect can exist at 
pressure equilibrium, as well as when the adiabatic pressure equilibrium can be significantly 
different from that finally reached at thermal equilibrium. 
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APPENDIX 

A number of limiting solutions to [14] for the adiabatic end-state are given below. 

1. 7 r--~ 1 (Isothermal Limit) 

There are three independent ways to cause yL~ 1: VG~ 1, ~1 ~ 1 and ~1 61 >> 1. When Vl ~ 1 (supply 
vessel isothermal), [14] becomes quadratic in 01 (teq). The case ? c ~ l  results in the trivial no flow 
limit 01(t~q)~l. The no flow limit also occurs whenever P2(0)~l,  V2~0 or 02(0)~1. For q~l-~l 
or ~b I ~l >> 1 the non-trivial solution 01 (t~q) = ~1 (oo) results, where 01 (oo) is given by [9]. In this case 

P~(t~) = P(oo) T ( ~ ) '  [A.1] 

which is the same as given by [7] only when T ( ~ ) =  1. 

2. V' ~ 1 (Charging Limit) 

When the initial receiver gas volume is much smaller than the initial supply gas volume, the 
supply conditions will remain essentially unchanged during the charging of the receiver to the 
supply pressure level, so that PI ~ 1 and 01 ~ 1. 

The conditions in the receiver do change and can be investigated via [12] and [13] and [I.30]--[I.33] 
if the limiting results are carefully derived. The procedures and results are similar to those of a pure 
gas [see Chenoweth (1974, sects C and D)]. When tp2 = q~l and using 52(t~q ) = 1, 

and 

Yl - A, (0)[1 - 52(0)] [A.3] 

~ ( t ~ ) =  +52(0)[T2~0)_1 ] ~1 1 -- (0)[1 --52(0)] 

When the receiving vessel is initially evacuated ~(t~q)~[V 1 - 21 (0)]/[1 - 21 (0)]. This limit gives the 
maximum effect of compressive heating during the charging process, which for a pure ideal gas 
reduces to the well-known result of V~. Clearly, temperatures exceeding the pure ideal gas limit are 
possible when 21 (0) @ 0. Also notice from [A.2] that when an evacuated vessel, initially containing 
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no particles, is used to rapidly draw a sample from its surroundings, the sample volume fraction 
may be less than that of  its surroundings by a factor as large as 7~", since 

O=(teq)"*l+E2(0)[ 1 --0'(0)17, .J 

as P2(0)~0. Therefore, one can have a substantial sampling error unless thermal equilibrium is also 
reached. 

3. V' >> 1 (Discharging Limit)  

In this limit the receiver conditions remain essentially unchanged, so that the supply discharges 
to the receiver pressure level. Therefore, from [_12] or [14] we obtain the supply volume fraction 
at the adiabatic pressure equilibrium P, (toq)=/'2(0): 

E, (teq) = {2, (0) q-- [1 -- 2, (0)]P2(0)-'/r'} - ' .  [A.4] 

For a pure ideal gas this limit recovers the results of  Chenoweth (1974, sect. E, 1983). 

4. ct = [3 (Single Fluid or Negligible Particle Heat Capacity Limit)  

Another solution of [14] occurs when ct = [3, giving 

O, (teq) : {21 (0) + [I - -  21 (O)]P, (teq)-1/7'} - l ,  

where 

[A.5] 

~l(teq ) 21 (0)P2(0)  -{-[1 - -  21 (0)]T2(0) + V2P2(0)T2(0) , [A.6] 
= 2,(0)P2(0) + [1 - 2,(0)]~(0) + v2 ~(0)  ' 

then Pl(t~q)= P(oo) only if T(oo)=  ~ ( 0 ) =  1. This special solution can occur in three ways: 

(a) receiver initially evacuated with no particles, P2(0) = 0, 02(0) = 4,2(0) = 0; 
(b) mass fraction of  particles the same in each vessel (single fluid) q~l = ~b2(0); or 
(c) particle heat capacity negligible compared to that of  the gas, 5, < 1, 7 , ~ .  

Obviously cases (a) and (b) both result in single-fluid transfer problems. For case (a) a = fl = 0, 
while for cases (b) and (c) we have 

[ ~ - 0 2 ( 0 ) 1  [A.7] 
= = P '   ,Tml 

5. The Mass Defect 

In the limiting solutions given above, E,(t~q):~ 01 ( ~ )  except for very special cases. In order to 
examine the magnitude of  the difference, a mass defect parameter is defined analogous to that 
defined by Chenoweth (1974, sect. A, 1983): 

E I (teq) - -  E l (OO) [A.81 
A =  1 - ~ , ( ~ )  

Since 0, = #,, this parameter represents the maximum fraction of the mass transferred at thermal 
equilibrium, which may be retained in the supply when pressure equilibrium is first reached. This 
mass defect is due to departures from thermal equilibrium and can be bounded in some cases. For 
example, using [9] and [A.5] in [A.8] when T2(0) = 1 so that P, (t~q) = p(oo)/T(oo) when 0t = t ,  we 

get 

A = P, (t~q) '/r' -- P, (t~q) [A.9] 
[ l  - F1 ( t ~ ) ] { 1  - 2 ,  ( 0 ) [ 1  - F1 ( t o 0 ' / H }  ' 

which is bounded by 

A0 ~ A ~< a ,  = a0{ff, ( t ~ )  -'/~' + 2~1 (0)[1 - P, ( t~ ) - ' /~ ' ] } .  [A.10] 
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The subscript on A refers to the values of  01 (0). That is, for all 0 ~< 01 (0) ~< 1, A is always greater 
than that of  pure gas (01 (0) = 0) for any given PI (tcq). For 2| (0) ~< 1/2, a smaller upper bound can 
be obtained using 

in the form 

_I-½_-_2o,(o)-I 
o,(o) LI  - 40, (o) I  

1 
A~<A~< 1 - - - .  [A.11] 

The value 1 - l/y, is approached for all 2,(0), when P,(teq) (given by [A.6]) approaches unity; 
clearly this is possible only when V' ,~ 1 or P2(0)~l .  When yl~),c and V'~V2,  the results agree 
with those for a pure gas given by Chenoweth (1974, sect. A, 1983). For ~b ~< 01(0 ) < 1 a maximum 
value occurs when dA/dPl(t~q)=0 in the interval 0<Pl(teq)<~ 1 with the value 
1 -  1/)q ~<Am~ < A 1 ~< 1, where unity is approached by Aj as P,(t~q)-,0. Expressions [A.9] and 
[A.11] are valid whenever V'>>I, y l ~ l  or ot=fl with T2(0)=I ,  as separate cases or in 
combination, and then P(oo)=Pl(t~q) if ~ o o ) =  1. The results for A when ct = fl and Pr = 1 (see 
definition [A.12] below) are given in figure 6 of  Chenoweth & Paolucci (1990b) and are valid for 
2G1 (0 )~  0, provided the parameter 0, (0) labeling the curves there is replaced by 21(0). 

It is of  interest to examine the mass defect (as defined by [A.8]), and the pressure ratio 

P, (t~q) 
Pr = ~ [A.12] 

using the numerical solution of  [14] when ~ # fl, ~, # 1 and V' is finite, to determine if significant 
deparatures from the special cases can exist. For such general cases, if T(oo) is included, 10 
independent parameters can affect the results for A and P,. The detailed comparisons of that study 
using an ideal carrier gas 2Gi (0) ,~ 1 are given in Chenoweth & Paolucci (1990b). Space restrictions 
do not permit general results to be given here for the AN gas case; however, the transient results 
as t--*t~q do illustrate the end-state solutions just derived. The behavior resulting if Pr # 1 is 
analogous in some respects to that found for ideal gas mixing involving different temperatures and 
different internal molecular structure (see Chenoweth & Paolucci 1989). 


